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Abstract 

We present an innovative protocol processor compo-
nent that combines wire-speed processing for low-level, 
and best effort processing for higher-level protocols. The 
component is a System-on-Chip that integrates variable 
size packet buffering, specialised cores for header and 
field processing, generic RISC cores and scheduling 
blocks. We focus on the main innovation, the reprogram-
mable pipeline module, and discuss its internal architec-
ture, optimised to perform field processing on byte 
streams, as well as protocol processing on complex data 
structures. Furthermore, we present how modern and new 
tools were used in system dimensioning, design, and veri-
fication phases. The chip is able to handle up to 512K 
flows organised in individual queues. It embeds 5 custom 
cores optimised for field processing, 3 typical RISC cores 
for packet processing and 11 generic and application 
specific hardware blocks. It’s been prototyped in UMC 
0.18uCMOS technology in a 1096-pin BGA package and 
operates at 200MHz for 2.5Gbps links. 

 

1. Introduction 

The evolution of networks, along with the ever-
increasing users’ demand for networking services, has 

imposed the development of high-capacity telecom sys-

tems. Modern systems and services must combine various 

features so as to convince for their affordability, applica-

bility and profitability. One of the main breakthroughs is 

the development of technology and solutions to support 
efficiently and effectively the entire service offering 

chain, focusing on the provision of acceptable QoS [8]. In 

this end-to-end path, a number of active nodes are in-

volved, each being able to process high bandwidth data, 

ranging from a few megabits (edge network) to several 
gigabits (core network) [7]. A critical issue in such sys-

tems is the processing of complex communication proto-

cols and functions not only in the OSI Physical and Net-

work Layers, but usually going up to Layer 4 or higher, 

depending on the type and the characteristics of the net-

work node. 

With time-to-market becoming the dominant force in 

the networking world, many companies have turned to 

RISC technology with optimised architectures for their 

systems. Another option is a hybrid approach with Sys-

tem-on-Chip (SoC) solutions combining both processor 

technologies, using one or more RISC cores and special 
hardware blocks to perform specific tasks. These compo-

nents called Network Processors have exhibited an enor-

mous advance in the turn of the millennium. For higher 

layer protocol functions that are not performed at wire 

speed, more than one high performance processing units 
are employed. Such functions include routing protocols, 

statistical compiling and reporting, error processing, con-

nection admission control, as well as network and trans-

port layers protocol processing (e.g. ATM/AAL, TCP/IP, 

SSCOP). In these applications, the processing units are 

inadequate to support the protocol processing require-

ments for the entire set of active sessions. This constitutes 

a major system resources bottleneck [8], because the 

complexity of the protocol algorithms requires higher 

computational power than that offered by today's proces-

sor technology. Furthermore, for such complex SoC im-

plementations, enhanced CAD tools are needed along the 
entire development cycle.  

In this paper we present a highly integrated and com-

plex component designed as a SoC, able to perform to-

wards two directions. On one hand, it processes at wire 

speed the low level IP or ATM based protocol functions 

for speeds up to 2.5Gbps, providing standard per flow 

queuing and scheduling. On the other hand, it integrates 

innovative processing elements with specialised field 

processors and typical RISC cores in order to process 

higher layer protocols. This component called the Pro-

grammable Protocol Processor (PRO3) offers a unified 
processing platform for both wire speed and best effort 

processing while very interesting trade-offs and configu-

rations can be realised depending on the application. 
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PRO3 achieves to involve efficient processing elements in 

the data paths of the system for all or part of the 2.5Gbps 

traffic. Section 2 presents the PRO3 architecture, while 
Section 3 presents the innovative field and packet 

processing cores of PRO3. Section 4 discusses typical 

applications of PRO3 while Section 5 presents a 

performance evaluation of these processing blocks. Fi-

nally Section 6 concludes the paper. 

2. PRO3 architecture 

The PRO3 architecture follows a different approach 

than typical network processors in the area of high speed 

protocol processing. PRO3 combines two levels of func-

tionality: (i) it processes at wire speed lower layer streams 

(e.g. IP or ATM layers) and (ii) it aims at accelerating 

execution of higher layer protocols by integrating spe-

cially enhanced high-performance RISC cores for bit and 
byte processing. Thus the PRO3 system offers three end-

to-end processing paths: (i) hardware based packet recep-

tion, storage and forwarding; (ii) wire speed packet proc-

essing involving specialised CPU cores, and (iii) best ef-

fort processing involving typical RISC CPUs. CPU de-
manding and (hard) real-time protocol functions are han-

dled by the programmable hardware, while the remaining 

functions as well as higher layer protocols are handled by 

the on-chip or the off-chip RISC CPUs in an integrated 

way. The concept of the PRO3 architecture is to provide 

the required processing power through a novel design, 

incorporating parallelism and pipelining and by integrat-

ing generic micro-programmed cores with components 

optimised for specific protocol processing tasks. Further-

more, efficient scheduling components are integrated so 

as to facilitate internal packet processing on a fair, bal-

anced manner as well as to control data streams generated 
by the chip. 
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Figure 1. PRO3 SoC functional architecture 

In general, the following sequence of operations is ap-

plied to each incoming packet: reception, verification, 

classification, storage, processing, and transmission. Each 

generic operation consists of a set of lower level func-
tions, while all operations can be understood as pipeline 

stages. In case of exception (error) the entire task and its 

data is redirected to the internal or the external RISC CPU 

for error handling. The latter is the cornerstone of PRO3 
concept. Normally, a protocol consists of a complex FSM 

that is mostly devoted for error handling and connection 

set-up and tear down. In error free operation (today net-

work links report very low bit error rate) only a very 

small part of the FSM is used. PRO3 targets to accelerate 

this part of functionality for higher layer protocols. 

Figure 1 depicts the functional architecture of the pro-

tocol processor that is similar to the way a protocol is 

executed in software. After being classified, each packet 

(or connection) is assigned a unique flow id. Then a field 

decoder (header processor) extracts the necessary fields 

and forwards to the processing unit structured informa-
tion. Finally a field or packet encoder (header processor) 

composes the outgoing packet (byte stream). 
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Figure 2. PRO3 SoC physical architecture 

The networking applications bottlenecks analysed in 

[1] and [2], presented that a certain subset of the protocol 

tasks are highly resource consuming either in terms of 

computational complexity or memory bandwidth. These 

critical functions can be accelerated with fixed or pro-

grammable hardware, leading to significant system per-
formance enhancement. To optimise performance, the 

Reprogrammable Pipeline Module (RPM) processes the 

most frequently and time-consuming protocol FSM seg-

ments in error free conditions according to the applica-

tion. Usually the result of packet processing is a new or 

modified packet and an update of the protocol FSM con-

text. RPM receives the entire packet or only its headers 

and processes the respective protocol message at wire 

speed. This module consists of a bit/field parser (Field 

Extractor), a RISC CPU with parallel I/O and processing 

operations, and a packet constructor (Field Modifier). 
Implementation of timers, memory management, per flow 

queuing, data and protocol context buffering are also an 

integral part of this design and potentially a bottleneck in 
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generic architectures, that can be offloaded to dedicated 

hardware units.  

Since programmability was set as a major requirement, 
RISC based micro-engines were selected for the imple-

mentation of the protocol processing functions. The 

physical architecture of PRO3 is depicted in Figure 2. 

PRO3 has been designed as a SoC integrating modules for 

pre-processing and post-processing, two RPMs, a header 

processor for programmable classification, and a typical 

RISC core for control and supervision. We integrated two 

RPM modules operating in parallel, in order to facilitate 

load balancing as well as execution of protocols with dif-

ferent incoming and outgoing data flows.  

An important component is the Data Memory Manager 

(DMM) that implements per flow queuing for up to 512K 
queues. Packets are stored in the external DDR DRAM in 

queues implemented as linked list data structures [3] sup-

porting both cell and variable packet size queuing. The 

DMM retrieves (parts of) packets in a FIFO manner per 

queue, in response to specific commands, and delivers 

them to the RPMs, to the internal RISC, to the host CPU 
(via the insert/extract interface) or directly to the output 

interface. Along all the processing data paths, special 

feedback signals allow extension of the processing time-

slot of each packet thus giving more flexibility to the sys-

tem. The received packets are stored, and usually only the 
first 64 or 128 bytes, which contain control information, 

are forwarded to the RPMs for processing. This efficient 

way of processing offers clear advantage of the architec-

ture, that differentiates it from other network processor 

designs. 
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Figure 3. RPM block diagram 

The main processing element of PRO3 is the Repro-

grammable Pipeline Module (RPM) as depicted in Figure 

3. RPM is an innovative module optimised to perform 

packet (involving both byte and structured) processing. 

Each RPM consists of a modified Hyperstone RISC core 
[4] surrounded by a Field Extraction (FEX) engine, which 

directly loads the required protocol data to the RISC for 

processing, and a Field Modification engine (FMO) for 

packet construction and header modification. All form a 

powerful 3-stage pipeline module capable of providing 

the mixed hardware and software processing heart of the 

system. The RPM RISC was enhanced so as to optimise 

the data I/O operation, by performing in parallel (pipe-

line) packet processing of two consecutive time-slots. A 

feedback signal from the RISC to the entire RPM can 

extend the processing cycle of a certain packet. This de-

sign offers an extreme advantage on tasks with high func-
tional diversity. In this way, the use and efficiency of a 

typical RISC processor core is enhanced yielding a clear 

cost/performance advantage. 

An important feature of the RPM architecture is the 

Packet Delay FIFO. The received data (entire or part of 

packet) are temporarily stored in the Delay FIFO waiting 
for packet processing results. The Field Modifier receives 

the delayed data along with the results from the RISC. 

Depending on these results and the application, it per-

forms the required modifications on the delayed packet 

and sends it back to the DMM. 

3.1. The Field Extraction engine 

The Field Extraction engine (FEX) is a small RISC 

with a three-stage pipeline architecture. It is fully pro-

grammable and operates on a protocol or application spe-
cific firmware. Only specific fields are extracted from the 

received (part of the) packet. Payload does not need to be 

entirely sent from DMM to RPM for processing. FEX 

acts as a typical software structure to alleviate the RISC 

from packet verification, bit and byte processing, and 
leave only generic software execution for it. This results 

in a constant ratio of cycle budget to packet length and 

optimal total processing time. 

Field extraction operation can start either from the 

packet header or the trailer(s). The component is able to 

process data with a maximum throughput of 6.4Gbps at 

200MHz. The average throughput may be less, since 

some instructions need more cycles or since one 32-bit 

word may contain several fields extracted separately. The 

block diagram of the module is depicted in Figure 4. FEX 

implements a three-stage generic pipeline for enhanced 

performance. The I/O operations are also pipelined using 
memory shadowing. 

FEX has been designed as a custom RISC for bit and 

byte processing. It executes 9 basic instructions and 4 

optional commands. Each instruction can be combined 

and executed in parallel with any or all of the commands. 

The instructions are used to parse the data, while the 

commands are used to control the internal registers. FEX 
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uses 4 generic registers, a Program Counter and a Data 

Pointer as depicted in Figure 4. The instructions are: 

NOP; EXTRACT (n, b) that extracts a field of n + 1 bits 
with rightmost being bit b; MOV A to DP; MOV B to 

DP; ADD A to DP; ADD B to DP; JMP C, a, addr; JMP 

D, a, addr (if C or D is equal to a then jump to addr); STR 

(restart); and FLGS type, flags (sent flags to PPE). The 

commands are: DEC DP; INC DP; DEC A; and DEC B. 

FEX executes firmware up to 2K-instruction that is suffi-

cient enough for such applications. A specific compiler 

tool has been implemented to aid software development. 
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Figure 4. FEX block diagram 

A similar FEX engine is also used in the pre-

processing block of the header processing, for the con-

struction of a classification key (e.g. 128 bit long for 

IPv4) up to 144 bits, that triggers the CAM-search. This 

increases PRO3 applicability to other networking proto-

cols including MPLS, IPv6 and gigabit Ethernet. 

3.2. The Protocol Processing Engine (PPE) 

PPE is the generic processing element in the RPM and 

the entire PRO3 system. PPE consists of logic for control 
and data transfers as well as an enhanced RISC CPU op-

timised to pipeline I/O operations with instruction execu-

tion. This modified RISC is a derivative of the standard 

Hyperstone E1-32XS microprocessor core [4]. The modi-

fied Hyperstone RISC uses 32 global and 64 local regis-

ters of 32 bits each, 16 global and 16 local registers di-

rectly addressable. Two sets of 14 global registers and 64 

local registers are accessible from the PPE controller via a 

special port. Core accesses are switchable between the 

two sets of 14 global registers and between the two parts 

of a 32+32 register partitioning of the 64 local registers. 
In this way, the PPE control logic can put state and packet 

information into the register file, and through the added 

read port, updated FSM context and packet information is 

read out. The RISC integrates 16 KByte dual-ported on-

chip memory with the second port accessible outside the 

core, used for initialisation. Pipelined memory accesses 

allow overlapping with instruction execution. 

Within PPE, the Data Controller interfaces and trans-
fers data between the Field Extractor, the Field Modifier, 

the Modified Hyperstone RISC and the Read/Write Con-

trol RAM (where the context is stored). The controller 

transfers the packet fields from the Field Extractor to the 

local portion of the RISC registers, and initiates packet 

processing when the RISC has completed processing of 

the previous packet. Furthermore, it reads and updates 

flow state information (context) from/to the Read/Write 

Control RAM and forward it to the RISC core. A feed-

back signal from the RISC to the PPE can extend the 

processing cycle of a certain packet. This may stall the 

operation of RPM in order to be able to accommodate 
extended packet-processing requirements. It is worth not-

ing that the RISC core does not have direct access to the 

external memory. Instead, the application firmware is 

resident on its on-chip cache memory. 

3.3. The Field Modification engine 

The Field Modification (FMO) engine is similar to 

FEX but with dual operation. It also adopts a three-stage 

pipeline architecture with totally programmable operation. 

Its target is to compose the protocol message (byte 

stream) according to the protocol specifications (firmware 

controlled), taking as input the results of processing from 

PPE (fields) and the data from the Delay FIFO. FMO per-

forms one of the following: (i) reject the packet(s) in case 

of errors, (ii) modify the original packet with the fields 

received from PPE, and (iii) compose a new packet. The 
new or modified packet is sent to the destination through 

the on-chip bus. This results in a constant ratio of cycle 

budget to packet length and optimal total processing time.  

The component is able to process data with a maxi-

mum throughput of 6.4Gbps. This is accomplished by 
using a 32-bit wide data path and operating clock fre-

quency of 200MHz (System Clock). The average 

throughput may be less, since some instructions need 

more clock cycles or since one 32-bit word may be com-

posed of several fields received separately. The block 

diagram of the module is depicted in Figure 5. FMO op-

eration is controlled by microcode stored in an internal 

SRAM (up to 2K instructions). The internal or external 

CPU can download the firmware dynamically at run-time, 

through the microprocessor interface. As in the entire 

PRO3, for FMO the time is distinguished into Processing 

Slots. Each Processing Slot can be variable in time and is 
able to accommodate and process a (part of) packet up to 

7 64-byte segments. 

FMO has been designed as a custom RISC for field 

processing. It executes 16 basic instructions and 6 op-

tional commands. Each instruction can be combined with 

one or more of the commands. The instruction and the 

commands are executed in parallel. The instructions are 
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used to parse the data from the Delay FIFO and compose 

the new packet, while the commands are used to increase 

or decrease the internal pointers/registers. FMO uses 5 
registers, a working register (WR), a Program Counter 

and a Data Pointer as depicted in Figure 5. The FMO is 

able to efficiently compose new packets or modify the 

Delay FIFO packet based on RISC processing results. A 

specific compiler tool has been implemented to aid soft-

ware development. 
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Figure 5. FMO block diagram 

FMO accepts fields from the RISC and outputs packets 

to the system bus. Packet modification is the most com-

plex scenario since specific fields of the stored data in the 

Delay FIFO may be used to correctly identify the location 
of the fields to be modified.  

4. Tools used during pro3 development 

During the design of the PRO3 system a number of 

tolls were used. First of all, the MATISSE [5] tool was 

used for memory studies for PRO3. Following system 

dimensioning step, each module was designed and veri-

fied using Mentor Graphics (Modelsim 5.5d) or Synopsys 

(Synopsys Design Compiler: 2000.11-SP1) tools. The 

integration phase proved to be quite extensive and hard 

due to the complexity of the design. A large number of 

hardware-software co-simulation test scenarios were per-

formed. A proprietary bus-functional model was adopted 
for the co-simulation, especially in RPM integration. 

The design flow was based on the Apollo ASIC layout 

tool from Avant! and related layout verification tools. The 

process was iterative, with frequent interaction between 

the layout and the design and synthesis. The back-end 

design flow started with a complete chip netlist and re-
sulted in a complete and verified layout, ready for fabrica-

tion. The whole procedure was divided in three stages 

involving Netlist and draft floor planning, chip layout and 

back-annotation and post synthesis simulation. 

Apart from the above third party or own CAD/CAE 

tools, furthers tools were developed during the design to 

serve the needs of both the design as well as for PRO3 
based applications development. These tools ease pro-

gramming of the involved cores. Especially for FEX and 

FMO, a compiler was developed to easily parse assembly 

programs for the components and to produce the binary 

code. The listing of a FEX/FMO program contains mne-

monics of assembly instructions and comments. The bi-

nary output can be directly loaded in the target PRO3 chip 

or used for co-simulation during the design.  

5. Performance evaluation 

It is worth noting that network processors constitute a 

new paradigm in network oriented computing architec-

tures and as such rare benchmark results exist and more 

important no accepted benchmarking procedures exist 
merely due to the polymorphism of architectures as well 

as to the dissimilarity of applications. Our approach com-

bines legacy benchmarking metrics for estimating the 

performance of programmable micro-engines (Instruc-

tions/Sec-IPS, Instructions/Cycle-IPC, etc.) as well as the 
trends of the NP Benchmarking Working Group of the 

EEMBC (EDN Embedded Microprocessor Benchmark 

Consortium) based on its first published draft [6]. A new 

metric introduced by EEMBC is the Headroom Concept 
to allow the measurement of the ability of a Network 

Processing Platform to perform multiple networking func-

tions aggregately, in many combinations and still main-

tain wire-speed performance. We must note here that 

since PRO3 follows a hybrid architecture with fixed and 

programmable engines designed to operate either in pipe-

line or in parallel we will denote Headroom as the per-

centage of the available processing resources of the chip 
that can be exploited in parallel. The main processing 

units that can operate in parallel are the two RPM and the 

central RISC unit. RPM throughput is determined by the 

worst case performance of each of its pipeline stages. We 

have developed the PRO3 to meet the performance targets 

that are included in the following table. 

Application 
Sustained 

rate 

Max 

flows 

Head-room 

(RISC, RPMs) 

ATM applications 

1 ATM processing 2,5 Gbps 512K 100%, 100%, 100% 

2 AAL5 processing 2,5 Gbps 512K 100%, 100%, 100% 

IP applications 

3 L2, 3, 4 filtering �2,5 Gbps 512K 100%, 100%, 100% 

4 L4 stateful inspect. �2,5 Gbps 512K 100%, 0%, 0% 

5 NAT 2,5 Gbps 512K 100%, 0%, 0% 

The average cycle-to-instruction ratio for the FEX mi-

cro engine is 1.6. Although that this value can be im-

proved by reducing the most clock-consuming instruc-

tions, however due to its function to perform extraction of 
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fields, whereas the payload is temporarily stored directly 

in Delay FIFO, small improvement is anticipated. It is 

worth noting that the total number of instructions (and 
processing time) for two segments (128-byte) is smaller 

than that for one segment (64-byte). This is due to the fact 

that the firmware easily identifies the case of two seg-

ments and based on the IP header lengths (resides in first 

segment) jumps directly to the fields to be extracted, 

which reside in the second segment.  

The cycle budget of FEX is close to 4 Mpackets/sec 

(Mpps), assuming average packets. This rate can be dou-

bled when the traffic is balanced between the two RPM 

modules and in this way 8Mpps traffic can be sustained. 

This throughput exceeds the OC-48 rate assuming worst 

case TCP/IP traffic of 40-byte packet length.  
On the contrary, FMO optimisations were of absolute 

importance. The total processing time in FMO depends on 

the packet length, thus the total processing time depends 

both on the header length and on the packet length. To 

this end, optimisation was possible yielding significant 

improve in its performance. For example the average cy-
cle-to-instruction ratio was 2.2 and after optimisation was 

decreased down to 1.7. That was attainable after detect-

ing, which firmware routines are most often called and 

which are the most cycle-consuming. Thus a significant 

decrease in the number of executed instructions was 
achieved, almost 60%, resulting in shorter processing 

times and in an improved instruction-to-clock ratio.  

Concerning the PPE block and mainly the Modified 

RISC, its throughput depends heavily on the custom run-

ning application and it is estimated, that for complex ap-

plications, like TCP state updating, less than 200 instruc-
tions are needed and this of course has an impact in the 

overall throughput. However for complex scenarios this is 

a trade off that any network processor faces. Based on our 

analysis, by using two RPM modules and balancing the 

load between these two (supported by the Internal Sched-

uler design) 4Mpps can be sustained at worst case, with 
only TCP traffic. For the average IP packet this rate ex-

ceeds the OC-48 rate of 2,5Gbps. 

6. Conclusions 

In this paper the Programmable Protocol Processor ar-

chitecture was presented with emphasis in the accelera-

tion of packet processing using an innovative concept of a 
3-stage pipeline processing operation and certain schedul-

ing and buffering in order to balance workload and re-

solve internal contention. The design is suitable both for 

cell and packet based network-processing applications. 

PRO3 chip can be understood in core or high-speed net-

work systems including switches, interworking units, 
broadband terminals and servers, broadband gateways and 

in general in systems that require the processing of proto-

cols higher than just the physical and network layers. 

Typical applications of PRO3 based systems include 

stateful inspection, firewalling, network address transla-

tion, massive processing of protocol instances, control 

nodes of large switches and interworking functions. 
The component architecture yields efficient VLSI im-

plementation, with low memory requirements and flexi-

bility to support multiple service disciplines in a pro-

grammable way, supporting thousands of flows concur-

rently. The chip has been fabricated in UMC 0.18�m 

CMOS process occupying about 52mm
2
 of area and pack-

aged in a 1096 BGA package. Samples are under testing.  

 

Figure 6. PRO3 die 
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