
Efficient Field Processing Cores in an Innovative Protocol Processor System-on-Chip

G. Lykakis
1
, N. Mouratidis

1
, K. Vlachos

2
, N. Nikolaou

2
, S. Perissakis

3
, G. Sourdis

4
,

G. Konstantoulakis1, D. Pnevmatikatos4, D. Reisis5
1InAccess Networks, 230, Sigrou Av, GR-17672, Athens, Greece

2Bell Laboratories AT EMEA, Larenseweg 50, 1200BD Hilversum, The Netherlands
3Ellemedia Technologies, 223, Sigrou Av, GR-17121, Athens, Greece

4Department of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece
5Department of Electrical and Computer Engineering, National Technical University of Athens, Greece

Abstract

We present an innovative protocol processor compo-
nent that combines wire-speed processing for low-level,
and best effort processing for higher-level protocols. The
component is a System-on-Chip that integrates variable
size packet buffering, specialised cores for header and
field processing, generic RISC cores and scheduling
blocks. We focus on the main innovation, the reprogram-
mable pipeline module, and discuss its internal architec-
ture, optimised to perform field processing on byte
streams, as well as protocol processing on complex data
structures. Furthermore, we present how modern and new
tools were used in system dimensioning, design, and veri-
fication phases. The chip is able to handle up to 512K
flows organised in individual queues. It embeds 5 custom
cores optimised for field processing, 3 typical RISC cores
for packet processing and 11 generic and application
specific hardware blocks. It’s been prototyped in UMC
0.18uCMOS technology in a 1096-pin BGA package and
operates at 200MHz for 2.5Gbps links.

1. Introduction

The evolution of networks, along with the ever-
increasing users’ demand for networking services, has

imposed the development of high-capacity telecom sys-

tems. Modern systems and services must combine various

features so as to convince for their affordability, applica-

bility and profitability. One of the main breakthroughs is

the development of technology and solutions to support
efficiently and effectively the entire service offering

chain, focusing on the provision of acceptable QoS [8]. In

this end-to-end path, a number of active nodes are in-

volved, each being able to process high bandwidth data,

ranging from a few megabits (edge network) to several
gigabits (core network) [7]. A critical issue in such sys-

tems is the processing of complex communication proto-

cols and functions not only in the OSI Physical and Net-

work Layers, but usually going up to Layer 4 or higher,

depending on the type and the characteristics of the net-

work node.

With time-to-market becoming the dominant force in

the networking world, many companies have turned to

RISC technology with optimised architectures for their

systems. Another option is a hybrid approach with Sys-

tem-on-Chip (SoC) solutions combining both processor

technologies, using one or more RISC cores and special
hardware blocks to perform specific tasks. These compo-

nents called Network Processors have exhibited an enor-

mous advance in the turn of the millennium. For higher

layer protocol functions that are not performed at wire

speed, more than one high performance processing units
are employed. Such functions include routing protocols,

statistical compiling and reporting, error processing, con-

nection admission control, as well as network and trans-

port layers protocol processing (e.g. ATM/AAL, TCP/IP,

SSCOP). In these applications, the processing units are

inadequate to support the protocol processing require-

ments for the entire set of active sessions. This constitutes

a major system resources bottleneck [8], because the

complexity of the protocol algorithms requires higher

computational power than that offered by today's proces-

sor technology. Furthermore, for such complex SoC im-

plementations, enhanced CAD tools are needed along the
entire development cycle.

In this paper we present a highly integrated and com-

plex component designed as a SoC, able to perform to-

wards two directions. On one hand, it processes at wire

speed the low level IP or ATM based protocol functions

for speeds up to 2.5Gbps, providing standard per flow

queuing and scheduling. On the other hand, it integrates

innovative processing elements with specialised field

processors and typical RISC cores in order to process

higher layer protocols. This component called the Pro-

grammable Protocol Processor (PRO3) offers a unified
processing platform for both wire speed and best effort

processing while very interesting trade-offs and configu-

rations can be realised depending on the application.

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)

1530-1591/03 $17.00 © 2003 IEEE

PRO3 achieves to involve efficient processing elements in

the data paths of the system for all or part of the 2.5Gbps

traffic. Section 2 presents the PRO3 architecture, while
Section 3 presents the innovative field and packet

processing cores of PRO3. Section 4 discusses typical

applications of PRO3 while Section 5 presents a

performance evaluation of these processing blocks. Fi-

nally Section 6 concludes the paper.

2. PRO3 architecture

The PRO3 architecture follows a different approach

than typical network processors in the area of high speed

protocol processing. PRO3 combines two levels of func-

tionality: (i) it processes at wire speed lower layer streams

(e.g. IP or ATM layers) and (ii) it aims at accelerating

execution of higher layer protocols by integrating spe-

cially enhanced high-performance RISC cores for bit and
byte processing. Thus the PRO3 system offers three end-

to-end processing paths: (i) hardware based packet recep-

tion, storage and forwarding; (ii) wire speed packet proc-

essing involving specialised CPU cores, and (iii) best ef-

fort processing involving typical RISC CPUs. CPU de-
manding and (hard) real-time protocol functions are han-

dled by the programmable hardware, while the remaining

functions as well as higher layer protocols are handled by

the on-chip or the off-chip RISC CPUs in an integrated

way. The concept of the PRO3 architecture is to provide

the required processing power through a novel design,

incorporating parallelism and pipelining and by integrat-

ing generic micro-programmed cores with components

optimised for specific protocol processing tasks. Further-

more, efficient scheduling components are integrated so

as to facilitate internal packet processing on a fair, bal-

anced manner as well as to control data streams generated
by the chip.

Programmable
processing core

Message

Classifica
tion

Memory Management
Timer

Pool

��

OUT

Embedded

RISC

Field

Decoder

Field

Encoder

Task &
Traffic

Scheduler

PRO3 SoC

Shared Memory

External RISC

Figure 1. PRO3 SoC functional architecture

In general, the following sequence of operations is ap-

plied to each incoming packet: reception, verification,

classification, storage, processing, and transmission. Each

generic operation consists of a set of lower level func-
tions, while all operations can be understood as pipeline

stages. In case of exception (error) the entire task and its

data is redirected to the internal or the external RISC CPU

for error handling. The latter is the cornerstone of PRO3
concept. Normally, a protocol consists of a complex FSM

that is mostly devoted for error handling and connection

set-up and tear down. In error free operation (today net-

work links report very low bit error rate) only a very

small part of the FSM is used. PRO3 targets to accelerate

this part of functionality for higher layer protocols.

Figure 1 depicts the functional architecture of the pro-

tocol processor that is similar to the way a protocol is

executed in software. After being classified, each packet

(or connection) is assigned a unique flow id. Then a field

decoder (header processor) extracts the necessary fields

and forwards to the processing unit structured informa-
tion. Finally a field or packet encoder (header processor)

composes the outgoing packet (byte stream).

CAM for
classification

Control & Context
RAM

CAM I/F (Handshake)

RPM 1

D
A

T
A

Storage
DRAM

Data Memory Manager (DMM)IN

OUT
OUT

C
E

L
L

P
o
in

te
r

Pointer
RAM

RAM I/F (Handshake)

Timers

Internal
RISC

INSERT /
EXTRACT RPM 2

Packet

Bus control,
Internal

Scheduling

Outgoing
Traffic

Scheduling

Traffic
Description

External
CPU

SDRAM Ctrl

CPU RAM

Debug
Block

Debug

Interface

Flow_id

CPU I/F

PRO3 SoC

Packet
Preprocessor

(ATM, AAL5 Rx,
Verifier, Classifier)

Packet
Postprocessor

(ATM, AAL5 Tx)

IN

Figure 2. PRO3 SoC physical architecture

The networking applications bottlenecks analysed in

[1] and [2], presented that a certain subset of the protocol

tasks are highly resource consuming either in terms of

computational complexity or memory bandwidth. These

critical functions can be accelerated with fixed or pro-

grammable hardware, leading to significant system per-
formance enhancement. To optimise performance, the

Reprogrammable Pipeline Module (RPM) processes the

most frequently and time-consuming protocol FSM seg-

ments in error free conditions according to the applica-

tion. Usually the result of packet processing is a new or

modified packet and an update of the protocol FSM con-

text. RPM receives the entire packet or only its headers

and processes the respective protocol message at wire

speed. This module consists of a bit/field parser (Field

Extractor), a RISC CPU with parallel I/O and processing

operations, and a packet constructor (Field Modifier).
Implementation of timers, memory management, per flow

queuing, data and protocol context buffering are also an

integral part of this design and potentially a bottleneck in

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)

1530-1591/03 $17.00 © 2003 IEEE

generic architectures, that can be offloaded to dedicated

hardware units.

Since programmability was set as a major requirement,
RISC based micro-engines were selected for the imple-

mentation of the protocol processing functions. The

physical architecture of PRO3 is depicted in Figure 2.

PRO3 has been designed as a SoC integrating modules for

pre-processing and post-processing, two RPMs, a header

processor for programmable classification, and a typical

RISC core for control and supervision. We integrated two

RPM modules operating in parallel, in order to facilitate

load balancing as well as execution of protocols with dif-

ferent incoming and outgoing data flows.

An important component is the Data Memory Manager

(DMM) that implements per flow queuing for up to 512K
queues. Packets are stored in the external DDR DRAM in

queues implemented as linked list data structures [3] sup-

porting both cell and variable packet size queuing. The

DMM retrieves (parts of) packets in a FIFO manner per

queue, in response to specific commands, and delivers

them to the RPMs, to the internal RISC, to the host CPU
(via the insert/extract interface) or directly to the output

interface. Along all the processing data paths, special

feedback signals allow extension of the processing time-

slot of each packet thus giving more flexibility to the sys-

tem. The received packets are stored, and usually only the
first 64 or 128 bytes, which contain control information,

are forwarded to the RPMs for processing. This efficient

way of processing offers clear advantage of the architec-

ture, that differentiates it from other network processor

designs.

3. PRO3 processing components

Data Controller
&

Interface to RISC

Field
Extractor

Modified
HY RISC

Execution of
micro-programs

Regs
I/O port

code

(DP RAM)

New

Context

Field
Modifier

Packet delay FIFO

IN from
on-chip

bus OUT to
on-chip

bus

On-chip

HY RISC

uP bus
Process

Context

MSG

Fields

Protocol Processing Engine (PPE)

To SW DRAM
To Context Storage RAM

NEW

Fields

Figure 3. RPM block diagram

The main processing element of PRO3 is the Repro-

grammable Pipeline Module (RPM) as depicted in Figure

3. RPM is an innovative module optimised to perform

packet (involving both byte and structured) processing.

Each RPM consists of a modified Hyperstone RISC core
[4] surrounded by a Field Extraction (FEX) engine, which

directly loads the required protocol data to the RISC for

processing, and a Field Modification engine (FMO) for

packet construction and header modification. All form a

powerful 3-stage pipeline module capable of providing

the mixed hardware and software processing heart of the

system. The RPM RISC was enhanced so as to optimise

the data I/O operation, by performing in parallel (pipe-

line) packet processing of two consecutive time-slots. A

feedback signal from the RISC to the entire RPM can

extend the processing cycle of a certain packet. This de-

sign offers an extreme advantage on tasks with high func-
tional diversity. In this way, the use and efficiency of a

typical RISC processor core is enhanced yielding a clear

cost/performance advantage.

An important feature of the RPM architecture is the

Packet Delay FIFO. The received data (entire or part of

packet) are temporarily stored in the Delay FIFO waiting
for packet processing results. The Field Modifier receives

the delayed data along with the results from the RISC.

Depending on these results and the application, it per-

forms the required modifications on the delayed packet

and sends it back to the DMM.

3.1. The Field Extraction engine

The Field Extraction engine (FEX) is a small RISC

with a three-stage pipeline architecture. It is fully pro-

grammable and operates on a protocol or application spe-
cific firmware. Only specific fields are extracted from the

received (part of the) packet. Payload does not need to be

entirely sent from DMM to RPM for processing. FEX

acts as a typical software structure to alleviate the RISC

from packet verification, bit and byte processing, and
leave only generic software execution for it. This results

in a constant ratio of cycle budget to packet length and

optimal total processing time.

Field extraction operation can start either from the

packet header or the trailer(s). The component is able to

process data with a maximum throughput of 6.4Gbps at

200MHz. The average throughput may be less, since

some instructions need more cycles or since one 32-bit

word may contain several fields extracted separately. The

block diagram of the module is depicted in Figure 4. FEX

implements a three-stage generic pipeline for enhanced

performance. The I/O operations are also pipelined using
memory shadowing.

FEX has been designed as a custom RISC for bit and

byte processing. It executes 9 basic instructions and 4

optional commands. Each instruction can be combined

and executed in parallel with any or all of the commands.

The instructions are used to parse the data, while the

commands are used to control the internal registers. FEX

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)

1530-1591/03 $17.00 © 2003 IEEE

uses 4 generic registers, a Program Counter and a Data

Pointer as depicted in Figure 4. The instructions are:

NOP; EXTRACT (n, b) that extracts a field of n + 1 bits
with rightmost being bit b; MOV A to DP; MOV B to

DP; ADD A to DP; ADD B to DP; JMP C, a, addr; JMP

D, a, addr (if C or D is equal to a then jump to addr); STR

(restart); and FLGS type, flags (sent flags to PPE). The

commands are: DEC DP; INC DP; DEC A; and DEC B.

FEX executes firmware up to 2K-instruction that is suffi-

cient enough for such applications. A specific compiler

tool has been implemented to aid software development.

Barrel
Shifter
(mask)

Barrel
Shifter
(mask)

Instruction
Memory

...

...

Registers
C, D

Data

Input
Data

Output

Bypass Data Output

�P Bus

PCPC

Instruction
Decoder Control

Unit
FSM

==++

DP

Registers
A, B

Data Memory,
End of Data Flag

32-bit64-bit

PRO3

Shared

bus

64+1-bit

32

bit

In
FSM

Figure 4. FEX block diagram

A similar FEX engine is also used in the pre-

processing block of the header processing, for the con-

struction of a classification key (e.g. 128 bit long for

IPv4) up to 144 bits, that triggers the CAM-search. This

increases PRO3 applicability to other networking proto-

cols including MPLS, IPv6 and gigabit Ethernet.

3.2. The Protocol Processing Engine (PPE)

PPE is the generic processing element in the RPM and

the entire PRO3 system. PPE consists of logic for control
and data transfers as well as an enhanced RISC CPU op-

timised to pipeline I/O operations with instruction execu-

tion. This modified RISC is a derivative of the standard

Hyperstone E1-32XS microprocessor core [4]. The modi-

fied Hyperstone RISC uses 32 global and 64 local regis-

ters of 32 bits each, 16 global and 16 local registers di-

rectly addressable. Two sets of 14 global registers and 64

local registers are accessible from the PPE controller via a

special port. Core accesses are switchable between the

two sets of 14 global registers and between the two parts

of a 32+32 register partitioning of the 64 local registers.
In this way, the PPE control logic can put state and packet

information into the register file, and through the added

read port, updated FSM context and packet information is

read out. The RISC integrates 16 KByte dual-ported on-

chip memory with the second port accessible outside the

core, used for initialisation. Pipelined memory accesses

allow overlapping with instruction execution.

Within PPE, the Data Controller interfaces and trans-
fers data between the Field Extractor, the Field Modifier,

the Modified Hyperstone RISC and the Read/Write Con-

trol RAM (where the context is stored). The controller

transfers the packet fields from the Field Extractor to the

local portion of the RISC registers, and initiates packet

processing when the RISC has completed processing of

the previous packet. Furthermore, it reads and updates

flow state information (context) from/to the Read/Write

Control RAM and forward it to the RISC core. A feed-

back signal from the RISC to the PPE can extend the

processing cycle of a certain packet. This may stall the

operation of RPM in order to be able to accommodate
extended packet-processing requirements. It is worth not-

ing that the RISC core does not have direct access to the

external memory. Instead, the application firmware is

resident on its on-chip cache memory.

3.3. The Field Modification engine

The Field Modification (FMO) engine is similar to

FEX but with dual operation. It also adopts a three-stage

pipeline architecture with totally programmable operation.

Its target is to compose the protocol message (byte

stream) according to the protocol specifications (firmware

controlled), taking as input the results of processing from

PPE (fields) and the data from the Delay FIFO. FMO per-

forms one of the following: (i) reject the packet(s) in case

of errors, (ii) modify the original packet with the fields

received from PPE, and (iii) compose a new packet. The
new or modified packet is sent to the destination through

the on-chip bus. This results in a constant ratio of cycle

budget to packet length and optimal total processing time.

The component is able to process data with a maxi-

mum throughput of 6.4Gbps. This is accomplished by
using a 32-bit wide data path and operating clock fre-

quency of 200MHz (System Clock). The average

throughput may be less, since some instructions need

more clock cycles or since one 32-bit word may be com-

posed of several fields received separately. The block

diagram of the module is depicted in Figure 5. FMO op-

eration is controlled by microcode stored in an internal

SRAM (up to 2K instructions). The internal or external

CPU can download the firmware dynamically at run-time,

through the microprocessor interface. As in the entire

PRO3, for FMO the time is distinguished into Processing

Slots. Each Processing Slot can be variable in time and is
able to accommodate and process a (part of) packet up to

7 64-byte segments.

FMO has been designed as a custom RISC for field

processing. It executes 16 basic instructions and 6 op-

tional commands. Each instruction can be combined with

one or more of the commands. The instruction and the

commands are executed in parallel. The instructions are

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)

1530-1591/03 $17.00 © 2003 IEEE

used to parse the data from the Delay FIFO and compose

the new packet, while the commands are used to increase

or decrease the internal pointers/registers. FMO uses 5
registers, a working register (WR), a Program Counter

and a Data Pointer as depicted in Figure 5. The FMO is

able to efficiently compose new packets or modify the

Delay FIFO packet based on RISC processing results. A

specific compiler tool has been implemented to aid soft-

ware development.

Data Input
(Packet Fields)

Instruction
Memory

...

Registers
C, D

Bypassed Data Input

(Packets, or part of packets)

�P Bus

Control
Unit

==

DP

Registers
A, B

Data Memory

34-bit

Data Output
(Packets,
messages)

Commands,
IBUS

control
word

32-bit

Cmds decoder
Block control

Barrel
Shifter 2
(mask)

Barrel
Shifter 2
(mask)

WR
(Mask)

PRO3
Shared
bus

Barrel
Shifter 1
Barrel

Shifter 1

Register E

IBUS fields

Output FSM

PC

Instruction
Decoder

FSM

tmp

65-bit

64-bit

Figure 5. FMO block diagram

FMO accepts fields from the RISC and outputs packets

to the system bus. Packet modification is the most com-

plex scenario since specific fields of the stored data in the

Delay FIFO may be used to correctly identify the location
of the fields to be modified.

4. Tools used during pro3 development

During the design of the PRO3 system a number of

tolls were used. First of all, the MATISSE [5] tool was

used for memory studies for PRO3. Following system

dimensioning step, each module was designed and veri-

fied using Mentor Graphics (Modelsim 5.5d) or Synopsys

(Synopsys Design Compiler: 2000.11-SP1) tools. The

integration phase proved to be quite extensive and hard

due to the complexity of the design. A large number of

hardware-software co-simulation test scenarios were per-

formed. A proprietary bus-functional model was adopted
for the co-simulation, especially in RPM integration.

The design flow was based on the Apollo ASIC layout

tool from Avant! and related layout verification tools. The

process was iterative, with frequent interaction between

the layout and the design and synthesis. The back-end

design flow started with a complete chip netlist and re-
sulted in a complete and verified layout, ready for fabrica-

tion. The whole procedure was divided in three stages

involving Netlist and draft floor planning, chip layout and

back-annotation and post synthesis simulation.

Apart from the above third party or own CAD/CAE

tools, furthers tools were developed during the design to

serve the needs of both the design as well as for PRO3
based applications development. These tools ease pro-

gramming of the involved cores. Especially for FEX and

FMO, a compiler was developed to easily parse assembly

programs for the components and to produce the binary

code. The listing of a FEX/FMO program contains mne-

monics of assembly instructions and comments. The bi-

nary output can be directly loaded in the target PRO3 chip

or used for co-simulation during the design.

5. Performance evaluation

It is worth noting that network processors constitute a

new paradigm in network oriented computing architec-

tures and as such rare benchmark results exist and more

important no accepted benchmarking procedures exist
merely due to the polymorphism of architectures as well

as to the dissimilarity of applications. Our approach com-

bines legacy benchmarking metrics for estimating the

performance of programmable micro-engines (Instruc-

tions/Sec-IPS, Instructions/Cycle-IPC, etc.) as well as the
trends of the NP Benchmarking Working Group of the

EEMBC (EDN Embedded Microprocessor Benchmark

Consortium) based on its first published draft [6]. A new

metric introduced by EEMBC is the Headroom Concept
to allow the measurement of the ability of a Network

Processing Platform to perform multiple networking func-

tions aggregately, in many combinations and still main-

tain wire-speed performance. We must note here that

since PRO3 follows a hybrid architecture with fixed and

programmable engines designed to operate either in pipe-

line or in parallel we will denote Headroom as the per-

centage of the available processing resources of the chip
that can be exploited in parallel. The main processing

units that can operate in parallel are the two RPM and the

central RISC unit. RPM throughput is determined by the

worst case performance of each of its pipeline stages. We

have developed the PRO3 to meet the performance targets

that are included in the following table.

Application
Sustained

rate

Max

flows

Head-room

(RISC, RPMs)

ATM applications

1 ATM processing 2,5 Gbps 512K 100%, 100%, 100%

2 AAL5 processing 2,5 Gbps 512K 100%, 100%, 100%

IP applications

3 L2, 3, 4 filtering �2,5 Gbps 512K 100%, 100%, 100%

4 L4 stateful inspect. �2,5 Gbps 512K 100%, 0%, 0%

5 NAT 2,5 Gbps 512K 100%, 0%, 0%

The average cycle-to-instruction ratio for the FEX mi-

cro engine is 1.6. Although that this value can be im-

proved by reducing the most clock-consuming instruc-

tions, however due to its function to perform extraction of

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)

1530-1591/03 $17.00 © 2003 IEEE

fields, whereas the payload is temporarily stored directly

in Delay FIFO, small improvement is anticipated. It is

worth noting that the total number of instructions (and
processing time) for two segments (128-byte) is smaller

than that for one segment (64-byte). This is due to the fact

that the firmware easily identifies the case of two seg-

ments and based on the IP header lengths (resides in first

segment) jumps directly to the fields to be extracted,

which reside in the second segment.

The cycle budget of FEX is close to 4 Mpackets/sec

(Mpps), assuming average packets. This rate can be dou-

bled when the traffic is balanced between the two RPM

modules and in this way 8Mpps traffic can be sustained.

This throughput exceeds the OC-48 rate assuming worst

case TCP/IP traffic of 40-byte packet length.
On the contrary, FMO optimisations were of absolute

importance. The total processing time in FMO depends on

the packet length, thus the total processing time depends

both on the header length and on the packet length. To

this end, optimisation was possible yielding significant

improve in its performance. For example the average cy-
cle-to-instruction ratio was 2.2 and after optimisation was

decreased down to 1.7. That was attainable after detect-

ing, which firmware routines are most often called and

which are the most cycle-consuming. Thus a significant

decrease in the number of executed instructions was
achieved, almost 60%, resulting in shorter processing

times and in an improved instruction-to-clock ratio.

Concerning the PPE block and mainly the Modified

RISC, its throughput depends heavily on the custom run-

ning application and it is estimated, that for complex ap-

plications, like TCP state updating, less than 200 instruc-
tions are needed and this of course has an impact in the

overall throughput. However for complex scenarios this is

a trade off that any network processor faces. Based on our

analysis, by using two RPM modules and balancing the

load between these two (supported by the Internal Sched-

uler design) 4Mpps can be sustained at worst case, with
only TCP traffic. For the average IP packet this rate ex-

ceeds the OC-48 rate of 2,5Gbps.

6. Conclusions

In this paper the Programmable Protocol Processor ar-

chitecture was presented with emphasis in the accelera-

tion of packet processing using an innovative concept of a
3-stage pipeline processing operation and certain schedul-

ing and buffering in order to balance workload and re-

solve internal contention. The design is suitable both for

cell and packet based network-processing applications.

PRO3 chip can be understood in core or high-speed net-

work systems including switches, interworking units,
broadband terminals and servers, broadband gateways and

in general in systems that require the processing of proto-

cols higher than just the physical and network layers.

Typical applications of PRO3 based systems include

stateful inspection, firewalling, network address transla-

tion, massive processing of protocol instances, control

nodes of large switches and interworking functions.
The component architecture yields efficient VLSI im-

plementation, with low memory requirements and flexi-

bility to support multiple service disciplines in a pro-

grammable way, supporting thousands of flows concur-

rently. The chip has been fabricated in UMC 0.18�m

CMOS process occupying about 52mm
2
 of area and pack-

aged in a 1096 BGA package. Samples are under testing.

Figure 6. PRO3 die

References

[1] G. Konstantoulakis, et al. “A Novel Architecture for

Efficient Protocol Processing in High Speed Commu-

nication Environments”, in proc. of ECUMN’2000,

Colmar, France, October 2000.

[2] N. Nikolaou, et al “Application Decomposition for
High-Speed Network Processing Platforms”, in proc.

of 2nd ECUMN’2002 April 2000, Colmar France.

[3] A. Nikologiannis, M. Katevenis, “Efficient Per-Flow

Queueing in DRAM at OC-192 Line Rate using Out-

of-Order Execution Techniques”, in proc. of
ICC2001, Helsinki, Finland, June 2001

[4] Hyperstone AG, E1-32X http://www.hyperstone.com.

[5] D. Verkest, et al, “Matisse: a system-on-chip design

methodology emphasizing dynamic memory management”,

VLSI '98. Proc. of IEEE Computer Society Work-

shop, 1998 Pages: 110–115.

[6] EDN Embedded Microprocessor Benchmark Consor-

tium “Network Processing Platform Benchmarking

Methodology Framework”, Draft 1.0 RFC, July 2000.

[7] “Technologies and Building Blocks for Fast Packet

Forwarding”, Werner Bux et al IEEE Comm. Mag.,

Jan 2001

[8] “A network processor architecture for flexible QoS

control in very high-speed line interfaces”, H. Shi-
monishi, T. Murase, IEEE workshop on High Per-

formance Switching and Routing, 2001 p 402-406.

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)

1530-1591/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

